Determination of nickel and its compounds in a working environment
More details
Hide details
Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy / Central Institute for Labour Protection – National Research Institute, Warsaw, Poland (Zakład Zagrożeń Chemicznych, Pyłowych i Biologicznych / Department of Chemical Aerosols and Biological Hazards)
Online publication date: 2021-06-25
Corresponding author
Jolanta Surgiewicz   

Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Zakład Zagrożeń Chemicznych, Pyłowych i Biologicznych, ul. Czerniakowska 16, 00-701 Warszawa
Med Pr Work Health Saf. 2021;72(3):267-81
Background: Nickel and its compounds have been classified as carcinogenic in a regulation of the European Parliament called the CLP Regulation (Classification, Labeling and Packaging). This substance is found in industry in the production of steel and alloys, and in the production of protective coatings. In Poland, the value of the maximum allowable concentration (MAC) for nickel and its compounds, amounting to 0.25 mg/m3, will be reduced to 0.1 mg/m3. The aim of the study was to develop a selective method for the determination of nickel and its compounds in the air at workplaces, used to assess occupational exposure and compliant with the requirements for procedures of determining chemical factors in the work environment. Material and Methods: The atomic absorption spectrometer SOLAAR M (ThermoElectron Corporation, USA) was used in the research. Results: The developed determination method consists in sampling nickel and its compounds contained in the air onto a membrane filter, followed by filter mineralization with concentrated acid and the determination of nickel with the use of atomic absorption spectrometry. A 1% lanthanum buffer was used to eliminate the Fe, Co, Cr and Cu interference. The method enables the determination of nickel in a wide concentration range of 0.25–10.00 μg/ml. The characteristic concentration for the determination of nickel was 0.07 μg/ml. The limit of quantification was 0.012 μg/ ml and the limit of detection was 0.004 μg/ml. The average value of the filter recovery coefficient is 1.00. Conclusions: The developed method for the determination of nickel and its compounds allows for a selective determination of this substance in the air at workplaces in the concentration range of 0.014–0.56 mg/m3 and 0.007–0.28 mg/m3 for an air sample with a volume of 720 l. It allows for the determination of this substance from 1/10 to 2 MAC values for the current mandatory value of 0.25 mg/m3 as well as for the 2.5 times lower hygienic standard proposed to be introduced by 2025 as binding limit value in the EU. The method meets the requirements of PN-EN 482. Med Pr. 2021;72(3):267–81
Journals System - logo
Scroll to top