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ABSTRACT

Background: The role of non-enzymatic antioxidants, such as uric acid, albumin, bilirubin, and a-tocopherol, in lead poisoning
remains unclear. Therefore, the aim of the study was to explore the association between occupational exposure to lead and non-
enzymatic antioxidant concentrations in serum and plasma. Material and Methods: The study population consisted of 278 healthy
male employees of lead-zinc plants, with 129 workers classified as having low lead exposure (blood lead level - PbB = 20-39.9 pg/dl)
and 149 workers classified as having high lead exposure (PbB = 40-59.8 pg/dl). The control group was composed of 73 healthy male
administrative workers. No one from this group had blood lead level or zinc protoporphyrin (ZPP) level greater than normal le-
vels, being 10 pg/dl and 2.5 ug/g of hemoglobin, respectively. In addition to the levels of PbB and ZPP, serum levels of uric
acid (UA), albumin, thiol groups of albumin, and bilirubin were determined. The ferric reducing ability of plasma (FRAP) and
the plasma level of a-tocopherol were also evaluated. Results: Lead exposure indices were significantly elevated in the examined
subgroups as compared with the controls. Serum uric acid levels were significantly elevated in both subgroups, particularly in
the group with high exposure. Serum bilirubin concentration was significantly elevated in the group with high exposure com-
pared with the control group, while in the group with low exposure, it showed only a non-significant trend towards an increase.
In contrast, ferric-reducing ability of plasma was not significantly greater in the examined subgroups as compared with the
control group. Nevertheless, levels of albumin, thiol groups of albumin, and a-tocopherol levels were significantly decreased in
the exposed subgroups compared with the control group. Conclusions: Occupational exposure to lead interferes with the blood
non-enzymatic antioxidant system. Med Pr 2014;65(4):443-451
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STRESZCZENIE

Wstep: Wplyw zatrucia ofowiem na nieenzymatyczny ukiad antyoksydacyjny nadal jest stabo poznany. Celem badania byto okre-
$lenie wpltywu zawodowego narazenia na pyly ofowiu na nieenzymatyczny uklad antyoksydacyjny u eksponowanych pracow-
nikéw. Material i metody: Grupe badang stanowilo 278 zdrowych pracownikéw (plci meskiej) huty cynku i ofowiu. Wyodreb-
niono 2 podgrupy - o niskim (stezenie olowiu we krwi: PbB = 20-39,9 pg/dl) i wysokim narazeniu (PbB = 40-59,8 pg/dl). Do
pierwszej podgrupy zakwalifikowano 129 pracownikéw, natomiast do drugiej z nich — 149. Grupe poréwnawcza stanowito 73 zdro-
wych pracownikéw administracji, u ktorych stezenie olowiu oraz cynkoprotoporfiryny we krwi nie przekraczato dopuszczal-
nych norm (odpowiednio 10 pg/dl i 2,5 pg/g hemoglobiny). Stopien narazenia na otéw okreslono na podstawie stezenia otowiu
i cynkoprotoporfiryny we krwi. Ponadto oznaczono stezenia kwasu moczowego, albumin, grup tiolowych albumin, bilirubiny
i a-tokoferolu. Okreslono takze warto$¢ tzw. zdolnosci redukujacej osocza (ferric reducing ability of plasma — FRAP). Wyniki:
Warto$ci biomarkeréw narazenia na otéw byty znamiennie wyzsze w grupie badane;j. Stezenie kwasu moczowego w surowicy byto
znamiennie wyzsze w obu jej podgrupach z tendencja do wyzszych warto$ci w podgrupie o wiekszym narazeniu na otéw. W pod-
grupie tej stwierdzono takze znamiennie wyzsze stezenie bilirubiny w surowicy, podczas gdy w drugiej podgrupie wykazano tyl-
ko tendencje wzrostowa tego parametru. Wartosci FRAP nie réznily si¢ zamiennie miedzy grupami. Z kolei warto$ci pozostatych
analizowanych parametréw (albuminy, grupy tiolowie albumin, a-tokoferol) byly znamiennie nizsze w badanych podgrupach
wzgledem grupy poréwnawczej. Wnioski: Zawodowe narazenie na pyly otowiu modyfikuje funkcje¢ nieenzymatycznego ukladu
antyoksydacyjnego. Med. Pr. 2014;65(4):443-451
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INTRODUCTION

Inorganic lead is one of the earliest identified occupa-
tional toxins (1). Sources of lead exposure include the
manufacture of ammunition, batteries, sheet lead, some
brass and bronze plumbing, ceramic glazes, caulking,
radiation shields, circuit boards, military equipment,
intravenous pumps, fetal monitors, and some surgical
equipment (2).

Lead has a strong affinity for sulthydryl (thiol)
groups and therefore may inhibit the activity of nu-
merous enzymes, including delta-aminolevulinic acid
dehydratase (ALAD). The interference with ALAD in-
hibits heme biosynthesis and results in ALA accumu-
lation (delta-aminolevulinic acid). Thus, blood ALA le-
vels could be used as a biomarker of lead exposure. The
activity of ferrochelatase, the enzyme that catalyzes
iron insertion into protoporphyrin IX, is also impaired
by lead. This impairment causes zinc-protoporphyrin
formation, which could also be used as a biomarker of
lead toxicity (3).

The physiological targets most affected by lead to-
xicity include the cardiovascular system, the hema-
topoietic system, renal and hepatic functions, the re-
productive system (4), and the nervous system (5).
The characteristic clinical manifestations of chronic
exposure to lead include: abdominal pain, nausea,
short-term memory loss, depression, loss of coordina-
tion, numbness and tingling in the extremities, consti-
pation, inability to concentrate, and impotence (2).

Oxidative stress has been reported to be the pri-
mary contributory agent in the pathogenesis of plum-
bism. Lead can not only generate reactive oxygen spe-
cies (ROS), but also be able to deplete antioxidant re-
serves (6). Furthermore, elevated levels of ALA, cha-
racteristic of plumbism, generate hydrogen peroxide
and superoxide radicals. ALA also interacts with oxy-
hemoglobin. This interaction results in the generation
of hydroxyl radicals, the most reactive free radicals (7).
Lead-induced oxidative stress damages various cellular
components, such as proteins, lipids, and DNA (4).

Lead interferes with both the enzymatic and non-
enzymatic antioxidant defenses (7,8).

The role of other non-enzymatic antioxidants, such
as uric acid, albumin, bilirubin, and a-tocopherol, in
lead poisoning remains unclear. Their concentrations
may be changed as a result of lead-induced dysfunctions
of the kidneys, liver, or gastrointestinal tract. Alterna-
tively, concentrations of these endogenous antioxidants
may influence lead-induced oxidative stress. Recent re-
ports concerning these interferences are inconsistent.
Therefore, the present study was designed to explore
the association between occupational lead exposure and
non-enzymatic antioxidant concentrations in serum and
plasma. This is the first study to simultaneously inves-
tigate many parameters associated with the function of
the non-enzymatic antioxidant system in lead exposure.

MATERIAL AND METHODS

Study subjects

A total of 278 male employees of zinc and lead plants
located in the southern region of Poland participa-
ted in the present study. The workers’ mean age was
40.8+9.6 years. The mean duration of employment was
16.4+10.2 years. None of the subjects had a history of
any chronic disease.

Blood concentrations of lead (PbB) and zinc pro-
toporphyrin (ZPP) and urine delta-aminolevulinic
acid (ALA) levels were measured on average every
3 months for 2 years. Mean levels of lead, ZPP and
ALA in the blood and urine were calculated (PbB,,...,
ZPP, s ALA ,..) using the obtained values. The exam-
ined group was divided into 2 subgroups: low expo-
sure to lead (LE) and high exposure to lead (HE). The
division was arbitrarily based on the mean concentra-
tions of blood lead level (PbB,,.,). The 1st group inclu-
ded 129 workers with PbB,.., < 40 pg/dl (PbB,., =
20-39.9 pg/dl), and the 2nd group included 149 workers
with PbB,een > 40 pg/dl (PbB .., = 40.0-59.8 pg/dl).

In the final set of blood samples, in addition to the
levels of PbB and ZPP, serum levels of uric acid (UA),
albumin, thiol groups of albumin, and total bilirubin
were determined. The ferric reducing ability of plas-
ma (FRAP) and the plasma level of a-tocopherol were
also evaluated.
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The control group was composed of 73 healthy
male administrative workers with mean age 41.5%
9.2 years. No one from this group had PbB or ZPP le-
vels greater than normal levels, which were 10 pg/dl
and 2.5 pg/g Hgb, respectively. All of the individuals
from this group had no history of occupational expo-
sure to lead. The experimental set-up has been approved
by the Bioethics Committee of the Medical University
of Silesia in Katowice, Poland (Decision No. NN-6501-
36/1/06).

Sampling and laboratory procedures

Blood was drawn by venipuncture. A total of 15 ml of
blood from each was placed in a tube containing diso-
dium ethylenediamine-tetraacetic acid (EDTA) solu-
tion as an anticoagulant to obtain plasma and erythro-
cytes, and 10 ml of blood was collected into a plain tube
in order to obtain serum.

Whole blood was used to analyze levels of lead and
zinc protoporphyrin. PbB levels were analyzed using
graphite furnace atomic absorption spectrophotometry
on Unicam 929 and 9390Z Atomic Absorption Spec-
trometers with GF90 and GF90Z Graphite Furnaces.
Data is presented as pg/dl. Concentration of zinc
protoporphyrin in the blood was measured directly
using the 206 Aviv Biomedical hematofluorometer,
with an excitation wavelength of 415 nm and an emis-
sion wavelength of 596 nm. The instrument measures
the ratio of ZPP as a fluorescent substance to the ab-
sorption of light in the sample (hemoglobin), displayed
as pg ZPP per gram of hemoglobin (ug/g Hb). Urine le-
vels of delta-aminolevulinic acid were measured using
the method of Grabecki et al. (9) and were expressed
in mg/1.

After the centrifugation of the remaining whole
blood, plasma was collected. Sedimented red blood
cells were washed 3 times with 0.9% NaCl and then
lysed with bidistilled water. The concentration of he-
moglobin in a 10% hemolysate was determined by the
cyanmethemoglobin method with Drabkin’s reagent.

Ferric-reducing ability of plasma (FRAP) was deter-
mined by the method of Benzie and Strain (10) using
the EM 280 biochemical analyzer (Emapol, Poland)
at a wavelength of 593 nm. Data is shown in pumol/L
Concentrations of a-tocopherol in plasma were mea-
sured by Shearer (11) using high-performance liquid
chromatography with a Spherimage 80 ODS2 column
and a UV/Vis detector (Knauer, Germany). Calcula-
tions were performed using EuroChrom 2000 soft-
ware (Knauer, Germany). Results are shown in pmol/l.

Levels of uric acid (UA), albumin, protein and to-
tal bilirubin were measured by means of the A25 bio-
chemical analyzer (BioSystems, Spain) according to
the manufacturer’s instructions. Results for UA and
bilirubin are shown in pmol/l, and those for albumin
and protein levels are expressed in g/l. Concentrations
of thiol groups of albumin were measured according
to the method of Koster et al. (12), results are shown
in pmol/g of protein.

Statistical analysis

Statistica 9.1 PL software was used to perform the sta-
tistical analysis. Statistical methods included the mean
and standard deviation. Levene’s test was used to verify
the homogeneity of variances, and Shapiro-Wilk’s test
was used to verify normality. Statistical comparisons
were performed using Student’s t-test, a t-test with se-
parate variance estimates, or a Mann-Whitney U test.
A Spearman non-parametric correlation was calculated.
The value of p < 0.05 was considered to be significant.

RESULTS

The mean age, body mass index (BMI), and smoking
habits were similar between the examined subgroups
and the controls (Table 1).

The mean PbB, ZPP, and ALA were significantly
elevated, by 426%, 171%, and 56%, respectively, in
the LE group relative to the control group. These bio-
markers were also elevated, by 623%, 317%, and 86%,
respectively, in the HE group relative to the control
group (Table 1).

The serum UA levels were significantly elevated,
by 7% and 16% in the LE and HE groups, respectively, in
comparison to the controls. Serum bilirubin concentra-
tion was significantly elevated by 15% in the HE group
compared with the control group, while in the LE group,
it only showed an insignificant tendency to increase.
In contrast, FRAP values were not significantly grea-
ter in the LE and HE groups as compared with the con-
trol group. The levels of albumin, thiol groups of albu-
min, and a-tocopherol were significantly decreased,
by 4%, 12%, and 17%, respectively, in the LE group and
by 6%, 13%, and 19%, respectively, in the HE group
compared with the control group (Table 1, Figure 1).

Spearman correlation showed that there were posi-
tive correlations between the markers of lead-exposure
and UA levels. Moreover, the markers in question cor-
related negatively with the concentrations of albumin
and the thiol groups of albumin (Table 2).
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Fig. 1. Antioxidant status of blood plasma in lead exposed groups presented as a percentage of the values obtained from the control group
Ryc. 1. Stan antyoksydacyjny osocza krwi badanej populacji przedstawiony jako procent wartoéci uzyskanych w grupie poréwnawczej

Table 2. Correlations among the study parameters (Spearman R values, p < 0.05)
Tabela 2. Korelacje miedzy badanymi parametrami (wsp6lczynnik R Spearmana, p < 0,05)

ij;’;’f:rr FRAP UA ALB ALB-SH BIL Vit. E
Age [years] / Wiek [w latach] ns. ns. -0.17 -0.23 ns. ns.
Exposure to lead [years] / Narazenie ns. ns. ns. ns. ns. ns.
na otéw [w latach]
BMI 0.13 0.21 ns. ns. ns. ns.
PbB_ ns. 0.21 -0.31 -0.29 ns. ns.
PbB ns. 0.23 -0.29 -0.28 ns. ns.
zpp_ ns. 0.20 -0.25 -0.27 ns. ns.
ZPP ns. 0.18 -0.25 -0.24 ns. ns.
ALA ns. 0.20 -0.24 -0.34 ns. ns.
ALA ns. 0.13 ns. -0.24 ns. ns.

ns. - not statistically significant / nieistotne statystycznie.
Other abbreviations as in Table 1 / Inne skroty jak w tabeli 1.

DISCUSSION

Associations between lead-exposure and levels of non-
enzymatic antioxidants have been studied by many re-
searchers, however, results are inconsistent and should
be verified. In the present study, many parameters asso-
ciated with the function of the non-enzymatic antioxi-
dant system have been investigated, bringing some new
information, especially about the dose-effect depen-
dence between blood lead level and antioxidant con-
centration.

Uric acid (UA) is the end product of purine metabo-
lism and acts as a scavenger of peroxynitrate. As a natu-
ral antioxidant, UA accounts for up to 60% of blood
antioxidative capacity (13). UA levels in the lead-exposed
subgroups were significantly elevated in a dose-depen-
dent manner. Specifically, the increase was significantly
higher in the HE group compared with the LE group.

Other human studies partially support the results of
the present study. A significant increase in the UA levels
in lead-exposed workers (PbB = 29.1 ug/dl) was reported
in a study by Khan et al. (14) as well. Bener et al. (15)
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also found significantly increased UA levels in work-
ers exposed to high doses of lead (PbB = 80.9 ug/dl).
Consistently, a positive correlation between blood lead
levels and UA concentrations was found in several stu-
dies (16-18). Furthermore, the comparison of 2 groups
of workers with PbB < 60 ug/dl and PbB > 60 pg/dl
showed a significant difference in the UA concentra-
tions. The authors postulated that subjects with blood
lead levels greater than 60 pg/dl had increased chances
of developing adverse renal effects. However, Omae
etal. (19) indicated that blood lead levels below 70 pg/dl
may not be associated with adverse effects on renal
function. In contrast, a study comparing aboriginals
and non-aboriginals in Taiwan indicated a higher risk
for renal dysfunction in people with blood lead levels
exceeding 7.5 ug/dl (20).

However, unchanged UA concentrations in lead
smelter workers (PbB = 46.6 ug/dl) were reported by
Roels et al. (21). Similarly, Konishi et al. (22) found no
association between UA and blood lead levels in lead-
exposed workers (PbB = 3.9-107.7 pg/dl). These results
are consistent with those of Weaver et al. (23) who also
observed no association between blood lead levels and
uric acid, after adjusting for age, sex, body mass index,
and alcohol use. However, this study did indicate that
older workers are more susceptible to the development
of hyperuricemia due to lead exposure.

Despite some discrepancies among the studies de-
scribed above, a dose-effect relationship between blood
lead and UA levels may exist. Several mechanisms may
cause increases in UA levels. High concentrations and
long residence time of lead in the renal tubular epithe-
lial cells make kidneys susceptible to lead-induced oxi-
dative stress and inflammation (14). Therefore, hyper-
uricemia may be due to increased tubular reabsorption
or decreased tubular secretion of UA (17,23). In addi-
tion, because lead nephropathy is associated with inter-
stitial fibrosis and glomerular sclerosis (18), decreased
glomerular filtration may result in elevated UA levels.
Finally, the increase in UA concentrations may be a re-
sult of lead-induced alterations in purine metabolism.
However, it should be noted that UA is known to be
a nephrotoxicant (20), and the renal pathologies that
occur in plumbism could, to some extent, be secon-
dary to hyperuricemia. Contradictory results of stu-
dies regarding the association between lead toxicity
and UA level may be caused by differences in the spe-
cific materials and methods of a particular study. Such
variables would determine unique combinations of the
several plausible mechanisms to be triggered by lead.

The antioxidant properties of albumin are attri-
buted to the cysteine thiol groups that determine plas-
ma redox status. Thiol groups act as ROS scavengers
and take part in thiol exchange reactions. In addition,
albumin sequesters prooxidant molecules and redox-
active metals. Moreover, albumin has been proposed
to have a thioredoxin-dependent lipid hydroperoxide
reductase activity in vitro (13,24).

Concentrations of both albumin and albumin thiols
were significantly decreased in the present study. Our
results are supported by a study of Mikhail et al. (25),
who observed decreases in serum albumin and total
protein levels, as well as a reversed albumin/globulin ra-
tio in lead tank welders (PbB = 42.19 pg/dl). This study
indicated the initial stages of fatty infiltration of the
workers’ livers. Khan et al. (14) also found decreased se-
rum albumin and total protein levels in workers. How-
ever, Al-Neamy et al. (26) reported unchanged albumin
and total protein levels in industrial workers exposed
to lead (PbB = 77.5 pg/dl).

Reduction in albumin and protein levels may be
caused by lead-induced inhibition of protein bio-
synthesis (27,28). This hypothesis was supported by
Koo et al. (29), who observed a decrease in albumin
mRNA in rat liver after the administration of lead ni-
trate. In a study by Shalan et al. (30), lead reduced the
total RNA content in rat livers, indicating a lower rate
of protein biosynthesis. One possible mechanism for
this effect is that protein biosynthesis could be down-
regulated by lead-induced alterations in excretion of
hormones, such as triiodothyronine (27).

The decrease in albumin thiol groups in the present
study was greater than the decrease in albumin. This
result could have been due to the binding of lead to
thiol groups and the elevated utilization of thiol groups
under oxidative stress conditions. Diminished thiol
contents in experimental lead exposure were reported
in rats (31,32) and calves (33). Simultaneously, elevated
parameters of lipid peroxidation were shown.

Bilirubin is an end product in heme metabolism.
Heme is degraded by heme oxygenase (HO) to biliver-
din, which is in turn converted to bilirubin by biliver-
din reductase. Bilirubin is known to have toxic effects at
high concentrations. However, under physiological con-
ditions, bilirubin possesses strong antioxidant potential
against peroxyl radicals. Bilirubin can act synergically
with a-tocopherol to protect lipids from ROS (34,35).
Noriega et al. (36) showed that bilirubin decreases
ALA toxicity in rats. Decreased lipid peroxidation, in-
creased glutathione (GSH) concentrations, and elevated
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activities of antioxidant enzymes were observed in this
study as a result of bilirubin administration.

Serum bilirubin level was elevated in the present
study. Consistent results were presented in several
studies. Ibrahim et al. (27) reported elevated plas-
ma bilirubin levels in rats that were treated with lead
acetate. Similarly, when examining rats exposed to lead
through intraperitoneal injections, Abdel-Moneim
et al. (37) observed elevated serum bilirubin concen-
trations. Berrahal et al. (34) observed significantly in-
creased plasma bilirubin levels in rats that had been
injected with 15 mg/kg of lead acetate. However, lead
acetate in a dose of 5 mg/kg was not sufficient to in-
duce bilirubin level elevation. Nevertheless, in stud-
ies of Mikhail et al. (25) and Al-Neamy et al. (26) bi-
lirubin levels showed only an insignificant tendency
to increase in workers exposed to lead, whereas Khan
et al. (14) reported that bilirubin concentration was not
significantly decreased.

An inducible isoform of heme oxygenase is HO-1.
Specific induction of HO-1 determines the adaptive re-
sponse of cells to oxidative stress, especially in myocar-
dium or nervous tissues, in which antioxidant defense
is less robust (34). Lead exposure has been confirmed to
induce HO-1 activity (38,39). This induction is a possi-
ble explanation for elevated bilirubin levels in lead poi-
soning. Due to the fact that the elevation of bilirubin
level was significantly higher in the HE group com-
pared with the control group and not significantly high-
er in the LE group compared with the control group,
it is reasonable to expect that lead induces HO-1 in
a dose-dependent manner.

‘Vitamin E’ is a term that is used to describe at
least 8 naturally occurring compounds. Alpha-tocophe-
rol possesses the highest biological activity. Alpha-
tocopherol interacts directly with ROS and protects
biological membranes and lipoproteins from oxidative
stress by limiting the propagation of lipid peroxidation.
Furthermore, a-tocopherol regulates the function of
the antioxidant defense system by modulating signal
transduction pathways (4,40).

Results of the recent studies indicate that vitamin E
could be useful in protecting membrane lipids from
lead-induced oxidative stress. It was reported that sup-
plementation with the vitamin may increase glutathione
production and lower lipid peroxide concentrations (41).
This supplementation may also prevent the lead-induced
inhibition of superoxide dismutase (SOD) and cata-
lase (42). Furthermore, a-tocopherol weakly increases
ALAD levels in rabbits with chronic plumbism (43).

Serum concentrations of a-tocopherol were signi-
ficantly decreased in the present study. Decreased
a-tocopherol concentrations were also reported in a study
by Ergurhan-Ilhan et al. (42) who examined appren-
tices exposed to low doses of lead (PbB = 7.9+5.2 ug/dl).
Moreover, Caylak et al. (44) showed decreased level
of vitamin E in rats that were orally exposed to lead
acetate.

The FRAP value reflects the antioxidant and re-
ducing potentials of biological fluids (10). Although
lead induces oxidative stress, FRAP levels were un-
changed in the examined subgroups. Therefore, el-
evated UA and bilirubin concentrations may compen-
sate for the decreases in albumin, albumin thiols, and
a-tocopherollevels, or other compensatory mechanisms
may occur.

CONCLUSIONS

Occupational lead exposure interferes with the non-
enzymatic antioxidant system in blood without change
in the reducing capacity of plasma.
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